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Turbulence in solid-body rotation is generabed by a flow of air passing through a 
rotating cylinder containing a dense honeycomb structure and a turbulence- 
producing grid. The velocity field is probed downstream of this device by hot-wire 
probes. Using the statistical quantities characterizing the fluctuating field, we show 
that the rotation affects mainly the components normal to the rotation axis and that 
these effects are triggered when the Rossby numbers constructed from macroscopic 
turbulent quantities, are less than unity. These results are discussed in the 
framework of other available experimental results on the subject. A theoretical 
interpretation, chiefly based on spectral analysis, is then proposed to explain the 
trends of the observations. 

1. Introduction 
The effects of rotation on turbulence concern all domains of fluid dynamics. 

However, in typical natural or industrial situations, rotation is often coupled with 
other dynamical factors such as deformation (shear flows), buoyancy (atmospheric 
and oceanic motion), or combustion (propulsion). 

In view of these various and complex situations, there is much to be gained by 
understanding the specific role of rotation in the absence of any other external 
mechanisms. For this, we consider the ideal case of a homogeneous rotating 
turbulence in an isothermal, incompressible fluid. If the mean velocity field 
corresponds to a strict solid-body rotation, statistical homogeneity of the fluctuating 
field is preserved and rotation acts as an external body force. 

This problem enters into the classical framework of anisotropic homogeneous 
turbulence, where the object is to know how the turbulent field reacts to the 
distortion associated with a particular mean flow. To preserve the homogeneity of 
the fluctuations, the mean flows are restricted to pure strain, solid-body rotation or 
a combination of these. Shear, which is a superposition of rotation and plane 
deformation, of equal rates, is in the latter class of flow. 

I n  a strained as well as in a sheared homogeneous turbulence the linear effects 
associated with the deformation dominate the dynamics of the flow, a t  least in a first 
phase, and the nonlinearity has to be modelled in order to counterbalance unrealistic 
energy growth. 

When rotation acts alone, there is no production of turbulent energy. An initially 
isotropic turbulence is acted upon by a solid-body rotation through nonlinear 
mechanisms only. This is the main specific feature of the problem: in a pure 
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homogeneous case, any structuring of the flow by rotation is definitely a consequence 
of nonlinear mechanisms. 

Previous experimental studies of homogeneous turbulence primarily concerned 
cases of pure strain (Batchelor & Proudman 1954; Gence & Mathieu 1979) and shear 
(Rose 1966; Tavoularis & Corrsin 1981 ; Bertoglio 1980). 

Experimental and theoretical studies devoted to the effects of rotation are more 
scarce. 

The theoretical groundwork on the subject has been recently reinforced. 
Examining for instance how rotation influences kinetic energy, as proposed by 
Rogallo (1981), Cambon (1982), the slowing down of its decay can be inferred from 
phenomenological considerations about overall inertial wave interactions. Con- 
cerning thc anisotropy of the lengthscales observed by Wigeland & Nagib (1978), 
contrary to global energy behaviour, such a result cannot be interpreted without an 
anisotropic phenomenology of nonlinear interactions. 

Decisive progress on the subject has been recently made by Cambon & Jacquin 
(1989), with the aid of a modellization of triple-correlation based on the Eddy 
Damped Quasi Normal (EDQNM) theory allowing anisotropic effects to be taken 
into account. Some basic mechanisms were proposed which link the behaviour of 
both the turbulent energy and the lengthscales to three-dimensional spectral 
mechanisms. A scenario of transition from a full three-dimensional turbulence 
towards a two-dimensional one, was proposed. 

The full numerical computation of the Navier-Stokes equations in periodic boxes 
with sufficient resolution is an excellent research tool for this problem. Up to now, 
the useful numerical results are those of Aupoix et al. (1983), Bardina et aE. (1985), 
Dang & Roy (1985), Teisskdre & Dang (1987). These numerical experiments have 
confirmed the decrease in energy in the presence of rotation as well as the anisotropic 
behaviour of the lengthscales. The latter studies, by Teisskdre & Dang, have focused 
on the spectral mechanisms described by Cambon & Jacquin (1989). In fact, most 
theoretical studies are devoted to one-point modelling (k-e  and Reynolds stress 
models) of rotating and curved shear flows. There is a comprehensive review of 
various contributions in Lakshminarayana (1986) ; see also the recent contributions 
of Speziale and colleagues, e.g. Speziale, Gatsti & Mhuiris (1989). 

Among the relevant experiments, we may mention those of Traugott (1958), 
Ibbetson & Tritton (1975), Wigeland & Nagib (1978), Hopfinger, Browand & Gagne 
(1982), for very different flows. 

In  Traugott, a rotating turbulence was obtained by means of an air flow passing 
through several grids in the annular section between two rotating concentric 
cylinders. The flow was very much influenced by boundary and grid effects, and the 
solid-body rotation was not achieved. 

In  the experiment by Hopfinger et al., turbulence was generated by a continuous 
oscillation of a grid a t  the bottom of a deep tank of water. They observcd singular 
wave effects together with the presence of quasi-two-dimensional elongated 
structures in the upper part of the tank. The origin of these large-scale vortices, 
which have also been found in other experiments in tanks, is still open to question. 
It seems likely that the influence of rotation on the turbulence generation (here by 
a transport mechanism), as well as boundary conditions, have to be taken into 
account in the interpretation of this two-dimensional behaviour (Mory & Caperan 
1987). 

Ibbetson & Tritton made their measurements in a shallow tank of air and the 
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turbulence was generated by the sudden displacement of two grids. Their results 
reflect peculiar dissipative effects induced by interactions between the inertial waves 
and the boundaries of their apparatus. The dissipation in the Ekman boundaries led 
to an increase of energy decay in the presence of rotation. 

Thus, for one reason or another, all the above experiments are outside the limits 
of homogeneous turbulence and accordingly out of our scope. The only experimental 
flow that can be considered as homogeneous is that of Wigeland & Nagib (1978, 
hereinafter referred to as WN). It concerns the first stage of decay of a rotating grid- 
generated turbulence. The flow is generated by means of a rotating duct equipped 
with a honeycomb followed by a grid. In this apparatus, uniform velocity and 
fluctuation level profiles are obtained and the Ekman dissipation is negligible. 

WN performed many experiments corresponding to various combinations of the 
mean velocity U ,  the rotation rate 52 and the grid mesh size M .  The lack of precise 
theoretical guidelines made this considerable amount of experimental work very 
difficult to interpret. It is felt that the lack of conclusive results were also due to the 
small dimensions of the apparatus: the homogeneous core in the last measurement 
section was small and the probes sizes was not negligible with respect to flow scales. 
Moreover, measurements were marked by the residual inhomogeneity coming from 
the rotating grid owing to the fact that the probes were not aligned with the axis of 
the duct (this arrangement was used to detect curvature effects, which have no 
meaning in this homogeneous problem). 

It was expected that the larger size of the present set-up together with the location 
of the probes on the duct axis would avoid the main difficulties found in the WN 
experiment. 

Section 2 describes the experimental set-up, and the various measurements 
performed to qualify the flow. In  the beginning of 52, an argument is presented to 
explain the particular choice of the (three) mesh sizes, the (five) rotation rates and 
the (one) mean axial velocity. 

Section 3 presents the results of the (one-point) measurements. The results concern 
the principal Reynolds stresses, one-dimensional spectra and associated integral 
timescales and lengthscales. It is shown that rotation mainly affects the transversal 
part of the fluctuating field. The search of correlating parameters leads to the 
definition of Rossby numbers built on the transversal and axial part of the 
fluctuations, separately. The introduction of these parameters leads to the 
characterization of a transition between an initial quasi-isotropic regime and a 
rotation-dominated regime associated to  a transversal structuration of the flow. 

Our results are compared to  those of Wigeland & Nagib in $4. 
The four last sections are devoted to various theoretical interpretations of the 

experimental results. 
In  $5,  we use a simple displaced particle argument (using the terminology of 

Tritton & Davies 1981 and Tritton 1989) to explain the action of the Coriolis force 
on the trajectories of the flow particles and its possible consequences on the statistics 
of the flow. 

The theoretical interpretations developetl in $56 and 7 are based on the spectral 
analysis. The possible impact of the inertial wave regime is first investigated in 56. 
A distinction is made between the case of a pure homogeneous flow and that of a flow 
enclosed in a vessel. I n  the first case, it is shown that the linear regime can lead to 
strong modifications of the statistics of the flow if the latter is initially non-isotropic. 
These effects are shown to be weak in our experiment. In the second case, we check 
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Convergent Rotating section Cylindrical test section 

FIGURE 1. Schematic of the experimental set-up (ONERA). 

the possible impact of the interaction of the inertial waves with solid boundaries as 
in the experiment of Ibbetson & Tritton (1975). The anisotropic properties of the flow 
during the rotation dominated regime are mainly a consequence of nonlinear effects. 
The spectral phenomenology of a transition towards a two-dimensional turbulence, 
proposed by Cambon & Jacquin (1989), is confirmed by the experiment. 

The body of this study was originally developed in the thesis dissertation of 
Jacquin (1987). Part of this work was also presented a t  the 6th Symposium on 
Turbulent Shear Flows and at the 2nd European Turbulence Conference (Jacquin, 
Leuchter & Geffroy 1988, 1989). A more extended presentation of the experimental 
part is given in Jacquin, Leuchter & Geffroy (1990). 

2. Experimental set-up 
The experimental set-up is sketched in figure 1. Solid-body rotation is achieved as 

in the WN experiment, by a rotating duct equipped with a fine mesh honeycomb. 
The mesh size and the width of the honeycomb are 1.5 mm and 10 cm, respectively. 
A rod grid is placed in the downstream part of the rotating duct. The diameter of the 
duct is 0.3 m. The maximum rotation rate is about 85 rad/s. The second part of the 
duct is fixed and its length is variable in order to  facilitate the exploration of the flow. 
The maximum length is 1.1 m. 

The flow is probed by means of a high precision mechanism allowing displacements 
in three perpendicular directions. The flow generator, the test section and the 
probing mechanism are located inside a test chamber from which the flow is 
extracted by means of a blower located downstream of the test chamber. The 
maximum axial velocity, U,  is 20 m/s. 

An experimental configuration is defined by a triplet of parameters ( U ,  a, M ) ,  with 
M being the mesh size of the grid which is located inside of the rotating duct. 
The main limitation of the system is due to  the possible blockage induced by strong 
deflections of the streamlines in the peripherical cells of the honeycomb. For a fixed 
value of U, this happens when fz bec,omes larger than a particular value. This is 
illustrated on figure 2 which shows the variation of e', the r.m.s. of the voltage 
delivered by a single hot-wire probe located on the axis of the duct, for three different 
values of U when fz varies. A dramatic increase of e' occurs when Q / U  2 6 m-l, that 
is when the peripherical angle 19 exceeds arctan ( a r 0 / U )  x 43" (with ro = 0.15 m). 
This limit corresponds to the occurrence of strong instabilities in the signal. It fixes 
the maximum rotation rate which can be performed for a particular velocity. 
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FIQURE 2. Limitation of the rotating generator : variation of the r.m.8. value of a hot wire 
placed on the axis of the duct for various values of 52 (rad/s) and U (m/s). 

2.1. Determination of an experimental conJiguration 
The experimental configuration was defined by the following considerations. 

It is well known that a grid-generated flow presents some universal properties. In  
particular, the decay of its energy is well described by means of a power function of 
(XlM) : 

(2.1) & = A  (d; _ _ _  zr. 
u2 

A value of a = 1.3 can be inferred from the large number of results available in the 
literature (see e.g. Comte-Bellot & Corrsin 1966). The origin x*/M can be physically 
interpreted as the length necessary for the grid wakes to mix together. From a simple 
derivation of this relation with respect to t = x / U ,  one can deduce a law for the 
dissipation rate 

and then obtain an expression for the time T ,  

1 
a = - ( t - t*) ,  (2.3) 

which characterizes the decay of the turbulence. The last relation shows that, for a 
given location with respect to the grid, T depends only on U .  

The rotation effects can be characterized by a Rossby number equal to the ratio 
between the rotation time rn = (2Q)-' and 7 .  A first evaluation of this parameter is 
obtained by supposing T to be insensitive to the rotation. This is equivalent to 
considering that the rotation does not modify the decay law (2.1). This is, of course, 
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U(m/s) = 10 
sl (r.p.m.) 
sl (rad/s) 

M =  10mm Ro, 
XlM 

M =  15mm Ro, 
XlM 

M = 2 0 m m  Ro, 
XlM 

Ro, (relation (2.4)) 

50 150 300 600 
5.24 15.7 31.4 62.8 

95.4 31.8 15.9 7.9 
25-113 

63.6 21.2 10.7 5.3 
16.7-75.3 

47.7 15.9 8.0 4.0 
12.5-56.5 

12-2 4-0.8 2-0.4 1-0.2 

TABLE 1. Experimental conditions 

certainly false. However, from the WN experiment, the effects of 52 on r are far from 
being spectacular. From (2.3), one obtains: 

The second relation gives a correspondence between the grid mesh Rossby number 
Ro, = U/2QM and the macroscale Rossby number Ro,. The first relation shows that 
Ro, depends on U / Q .  As we said above, this ratio cannot be less than about Q m owing 
to instabilities induced by the honeycomb below this limit. This value fixes a 
minimum for Ro,. For a = 1.3 and x*/M = 3, this minimum is about 0.2 at  the end 
of the test duct. However, if, as expected, the rotation slows the decay of q2,  this 
would lead to an increase of T and to smaller values of Ro,. 

The mesh size M will fix the lengthscales of the flow which must be sufficiently large 
with respect to  the probe size. In  accordance with (2.1) and (2.31, it will also 
determine the range of variation of the kinetic energy h2 or equivalently that of the 
decay time T .  

Three values M = 10, 15 and 20 mm were tested. A mean velocity of U = 10 m/s 
was chosen to  make use of about the whole capacity of the rotation generator with 
four rotation rates between 5 and 63 rad/s. 

The experimental configurations are summarized in table 1 .  
This makes i t  possible for Ro, to span about two decades. 

2.2. Measurement techniques 
For the turbulence measurements we used DISA P61 crossed hot-wire probes and 
DISA 55M01 anemometers with a 55MlO standard bridge. A PRESTON GMAD-1 
converter and an H P  1000 digital data acquisition system were used to process the 
signals. The acquisitions correspond to following parameters : digitization frequency 
8000 Hz ; low-pass filtering 3150 Hz ; buffer length 100 blocks of 2048 values (for each 
wire). 

The velocity components were obtained by numerical interpolations of numerical 
charts generated during the calibrations of the hot-wire probes. 

Frequency spectra of the fluctuating velocity components are also provided by 
means of classical FFT techniques. 
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FIGURE 3(a) .  For caption see page 9. 
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FIGURE 3 ( b ) .  For caption see facing page. 
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FIGURE 3. Mean profiles in the first and last test sections, for B = 0 and 62.8 radfs: 
(a)  M = 10 mm, ( b )  M = 15 mm, (c) M = 20 mm. 
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2.3. Quali$cation of the flow 
Figure 3 shows the mean velocity and r.m.s. distributions in the first and the last test 
sections of the duct for 52 = 0 and 52 = 62.8 rad/s. Figures 3(a)-3(c)  correspond to 
the three different mesh sizes. For these measurements the probes are translated 
along the horizontal axis y ,  and, for 52 + 0, they are reorientated several times to  
minimize their incidence with respect to the swirling mean streamlines. The 
traverse mechanism cannot span a whole diameter, which is why the profiles are 
incomplete. The radial component, V ,  is measured with a horizontal orientation of 
the plane of the wires, and the tangential component, W ,  with a vertical orientation. 

These figures show that in the presence of rotation the tangential profiles are 
perfectly rectilinear and well preserved along the duct. The mean solid-body 
rotation, which is a necessary condition for the existence of homogeneous rotating 
turbulence, is thus well achieved. 

Concerning the fluctuations, in the first test section the profiles exhibit some 
variations which are due to the position very close to the grid and to slight residual 
rotating inhomogeneities coming from the grid. Further downstream, the in- 
homogeneities have been smoothed out so that very satisfactory conditions for 
homogeneity prevail. Note that the boundary layer has developed but the core of 
solid-body rotation is still about 200 mm in diameter a t  the end of the duct. 

The levels of the respective components u', v' and w' as well as their sensitivity to 
the rotation will be extensively discussed in the subsequent sections. 

3. Characterization of rotation effects 

axis of the duct. 
3.1. Kinetic energy 

Figure 4 shows the decay of (twice) the kinetic energy q2 = d 2  + w" + w" for all cases 
of table 1. The values corresponding to the various rotation rates and the reference 
cases 52 = 0 are brought together with suitable translations of the vertical axis. 
Figure 4 ( a ) 4 ( c )  correspond to the three different mesh sizes. Figure 4 ( d )  shows the 
power laws which can be inferred from the results of figure 4(b )  (the respective values 
of the exponent and of the origin are indicated on the curves). 

Considering the cases without rotation, if one introduces a fictitious origin x* and 
an exponent a! to obtain the best power-law fit (2.1) (in the least-square sense) on 
these values o f q 2  one obtains the results shown in table 2. The various values of x*/M 
and a! lie in the range of previous results of grid-generated turbulence. The second of 
these laws corresponds to the curve a t  the bottom of figure 4(d ) .  

Figure 4(a-c) shows that rotation slows the decay of q 2 :  the larger SZ,  the more 
intense is this effect. 

Considering figure 4 ( d ) ,  the possibility of smoothing the set of ten experimental 
points by means of the two parameters x*/M and a! is not surprising from a tcchnical 
point of view. In  the authors' opinion, these results have no particular physical 
meaning. They are given for the purpose of illustrating the gradual slowing down of 
the turbulence decay under the effect of rotation. 

All the measurements corresponding to table 1 of 92.1 have been performed on the 

3.2. One-dimensional spectra 

Figure 5 shows the power spectral density functions E ,  and E ,  obtained for 52 = 0 
and for 52 = 62.8 rad/s in the different sections of the duct. Figures 5 (a ) ,  5 ( b )  and 5 ( c )  



0.005 

0.005 

0.005 

0.005 

0.0005 

Homogeneous turbulence in the presence of rotation 

: i 5 . 2  
10 20 40 60 80 100 

o.ooo5 t 
L 4 

X l M  

10 20 40 60 80 100 

0.005 

0.0005 

0.005 

a (rad/s) 

62.8 

31.4 

15.7 

-a=o 
- O f 0  

I 

10 20 40 60 80 100 
x l M  

- Q = O  \ 5.2 
+ Q # O  

10 20 40 60 80 
( x - x * ) / M  

FIGURE 4. Decay of the kinetic energy at various SZ: (a) M = 10 mm, ( b )  M = 15 mm, 
(c) M = 20 mm, ( d )  power laws for M = 15 mm. 

11 

M A x*/M d 

10 mm 0.263 1.69 1.45 
15mm 0.151 2.60 1.30 
20 mm 0.275 1.82 1.43 

TABLE 2 
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FIGURE 5. Energy spectral density function of u and v signals at i2 = 0 and 62.8 md/s in 
different positions: (a) M = 10 mm, ( b )  M = 15 mm, ( c )  M = 20 mm. 

give the results for each of the three mesh sizes. The curves correspond to smoothing 
of FFT estimators with order ten Chebyshev polynomials. 

Figure 5 (a) ,  shows that, with rotation an extraneous low-frequency contribution 
to E ,  appears. This bump, located in the range of frequency around 0 / 2 x  x 10 Hz, 
results from residual inhomogeneities coming from the rotating grid. As the mesh size 
increases, the magnitude of the low-frequency components becomes higher than that 
of the bump and the latter disappears as shown on figure 5(b )  and 5 ( c ) .  However, i t  
is now E,, which is affected by an extraneous low-frequency energy in the range 
f < 30 Hz. This phenomenon is observed at 0 = 0 and is independent of the rotation. 

Some tests have shown that this extraneous contribution was induced by a 
longitudinal pulsation of the flow caused by the discontinuity of the test duct in the 
test chamber (see figure I )  and that this mechanism interacted with the largest scales 
of the flow. This interaction increased with the level of the energy associated with the 
largest scales, this energy being fixed by the mesh size of the grid in the apparatus: 
this extraneous energy cannot be detected in the spectra corresponding to the smaller 
mesh size M = 10 mm (figure 5a)  whereas its contribution to u ' ~  can go as high as 
22 % for the 20 mm grid (figure 5 c ) .  

The increase in the ratio d2 /d2  with M a t  0 = 0, which is inferred from figure 3, 
is essentially due to this phenomenon. 

For U = 10 m/s, the value f D  = 30 Hz corresponds to flow structures which have 
the same length as the diameter D of the duct. This correspondence has been 
confirmed by changing U. The range f < fD thus corresponds to structures which are 
outside the limit of homogeneity. 
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FIGURE 6(a ,  b ) .  For caption see facing page. 

One possibility was to filter out the signals below f D .  Another was to fix the value 
of E, ( f )  at  E,(fD) for f < fD. These procedures were tested during preliminary 
investigations of the flow. Their consequences on different aspects of the results 
presented herein have been found to be negligible. I n  view of the arbitrariness of 
these treatments we have decided to keep things unchanged. As will be explained 
later, only the integral lengthscales required suitable corrections on account of this 
problem. 



Homogeneous turbulence ,in the presence of rotation 15 

0.002 

0.002 

0.002 

0.002 

0.0002 

T 
T 
I 

0.002 

0.002 

0.002 

0.002 

\\,5.7 

- a = o  ‘.4 5.2 
+ a z o  

0.0002 

i 

\\ 15.7 

+ Q # O  5.2 

I 

10 20 40 60 80 100 10 20 40 60 80 100 

x l M  X l M  

FIGURE 6. Decay of the individual normal stresses u ‘ ~  and d2 for various SZ: (a) M = 10 mm, 
(b)  M = 15 mm, (e) M = 20 mm. 

Concerning the effects of rotation on E ,  and E, aside from the range f < fD, strong 
modifications are observed. In the mid-frequency range, the slopes are accentuated 
as a consequence of a lessening of the energy in the high-frequency range and an 
increase in the low-frequency range. The spectra for the transverse fluctuation 
component E, is much more affected by a spectacular increase of the low-frequency 
contribution. 

If we ignore this anisotropic aspect, these curves substantiate the following global 
phenomenology : rotation inhibits the transfer of energy from large scales to smaller 
scales; this results in a lessening of the dissipative process and, consequently, in a 
slowing of the kinetic energy decay. 

The differences observed between the E,  and E, spectra is evidence that the above 
process is strongly non-isotropic and that it mainly affects the transverse part of the 
fluctuating field. This point will be thoroughly examined in the subsequent sections. 

3.3. Normal stresses 
Figure 6 shows the evolutions o f d 2  and d2 ( x w ’ ~ )  and figure 7, that of the structural 
parameter 

introduced by Townsend (1954) to characterize the anisotropy of the Reynolds stress 
tensor. This anisotropy could also be characterized by the invariants of this tensor. 
Parts (a ) ,  ( b )  and ( c )  of figures 6 and 7 show the results corresponding to each of the 
three mesh sizes. Several remarks may be made about these figures. 



16 L.  Jacquin, 0. Leuehter, C .  Cambon and J .  Mathieu 

(6) 
0.25 Q = O  +-= = =  = \  

3 I .4 rad/s 

.. I 

50 
1 

100 
I 

I50 

O I  x (cm) 

FIGURE 7. Structural parameter K = ( U ’ ~ - U ’ * ) / ( U ’ ~ + W ’ ~ ) :  (a) M = 10 mm, ( b )  M = 15 mm, 
(c) M = 20 mm. 

Figure 6 shows that rotation slows the decay of both components, but different 
behaviours are observed depending on the mesh size: for M = 10 mm (a) ,  and M = 
20 mm (c), u’~  and d2 are equally affected, whereas for M = 15 mm (b),  u ’ ~  is affected 
little with respect to v”. This is confirmed by figure 7 where a quasi-invariance of K 
is observed for M = 10 and 20 mm, whereas for M = 15 mm, a damping of the 
anisotropy is obtained according to the decrease of K with x / M  and 9. This difference 
has not yet been explained. 

Thus, except perhaps for M = 15 mm, the normal stresses do not reflect the 
anisotropic mechanisms of rotation which are expected from the changes in the one- 
dimensional spectra of figure 5 .  

The increase of K for SZ = 0 between the case M = 10 mm and M = 15 mm or M = 
20 mm is directly associated with the emergence of extraneous energy in the range 
f < 30 Hz of E ,  (see previous section). 



Homogeneous turbulence in the presence of rotation 17 

3.4. Integral lengthscales 
The integral lengthscale L ,  is the mean correlation length between the components 
ui and uj of the fluctuations measured at  different locations with separations along 
the l-axis: 

(3.2) 
( u 6 ( x )  uj(x + r i l ) )  dr. 

= I ( U i ( X )  U j ( X ) )  

The integral lengthscales that have been investigated in the present experiment 
are L,,,, and Lz2 ,1 ( zL33 ,1 ) :  these scales are mean correlations between u or v 
fluctuations considering axial separations (along the rotation axis). For convenience 
they will be denoted L,  and L, ( M L ~ ) ,  respectively. 

In practice, these quantities may be found from the time correlations of u and v 
signals. For this, relation (3.2) is transformed in the framework of ergodicity and 
using the Taylor 'frozen field' hypothesis. 

Equivalently, they can be calculated (with the same assumptions) from the power 
spectral density functions E, ( f )  and E,( f ). The relations are written : 

u 
421'2 

L, = -E,(f= 0). 
(3.3) 

As the zero frequency corresponds to records of infinite length it is not accessible in 
the experiment. An extrapolation down to the origin of the available spectral 
estimators is then necessary (see Comte-Bellot & Corrsin (1966) for a discussion on 
this point). This procedure becomes very questionable in the presence of the 
extraneous low-frequency contributions to E, ( f )  in figure 5. This bump in the 
spectra corresponds to long oscillations of the tails of the time correlation and an 
equivalent difficulty would be encountered in evaluating the integrals of such 
functions. 

In order to overcome this difficulty, we have replaced .f = 0 in relations (3.3) by 

As we said in $3.2, the limit fD of the low-frequency bump, corresponds to the 
diameter of the duct. Looking at  E, in figure 5 ,  this change of definition does not 
affect L, for M = 15 mm and 20 mm because of the very flat initial shape of E,; for 
M = 10 mm, f D  lies outside the frequency range of residual grid inhomogeneity 
effects (around 10 Hz). This change of definition does not significantly affect L, in the 
case of the smaller grid, the spectra E,  being regular in this case. 

An alternative would consist of both filtering the u-signal with a high-pass cutoff 
frequency of 30Hz and substituting the energy of this signal for u ' ~  in (3.4). 
Preliminary investigations have led us to the conclusion that, whatever the rotation 
rate is, this new definition changes the level of L, but not its evolution law. In 
consequence, (3.4) have been adopted for the definition of L,  and L,. 

Figure 8 shows the variation of L, and L, versus x/M at 52 = 0. In a grid-generated 
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FIQURE 8. Integral lengthscales L,  and L, versus z / M  for SZ = 0:  (a) M = 10 mm. 
(b) M = 15 mm, (c) M = 20 mm. 

M x*/M B, P u  4 P” 
10 mm 1.69 0.212 0.303 0.070 0.375 
15 mm 2.78 0.211 0.273 0.066 0.345 
20 mm 1.82 0.147 0.330 0.040 0.462 

TABLE 3 
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FIGURE 9. Integral lengthscales L, and L, versus x /M for various S Z :  (a) M = 10 mm, 
( b )  M = 15 mm, ( e )  M = 20 mm. 

x l M  

turbulence, as concerns the kinetic energy, these scales are usually described by -. 

power laws of the type: 

(3.5) 

From figure 8, one obtains table 3. Classical results correspond to p, - 0.35, p, - 0.30 
and L, > 2Lv (see e.g. Comte-Bellot & Corrsin 1971). Note that L, = 2L, in the 
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case of a strictly isotropic turbulence. The exponent p, found in the present 
experiment is thus smaller than that found in previous studies. This is most likely to 
be a consequence of the particular behaviour of the low-frequency part of E,( f ). 

Figure 9 shows how L,  and L, vary in the presence of rotation. The straight lines 
correspond to the cases without rotation of figure 8. As it could be inferred from the 
shapes of the spectra in figure 5, rotation has a more pronounced influence on the 
transverse scale L, than it has on the axial one, L,: when 52 increases, L, departs 
quite abruptly from its initial behaviour and then increases faster. The higher 52 is, 
the closer to the grid this change occurs. This second regime for L, is well described 
by a power law with an exponent close to unity, so that L, becomes approximately 
proportional to the time t ( x x / U ) .  L,  is affected little, behaving mostly as if there 
were no rotation. The only exception is for M = 15 mm and 20 mm, for the largest 
rotation rate and the larger x /M.  Note that in this case L, is now larger than L,. 

These results show that rotation strongly increases the lateral coherency of the 
fluctuations. Moreover this effect seems to be triggered for particular values of x/M. 
The existence of this transition-like change of behaviour is of great interest and will 
be characterized soon. 

3.5. Rossby numbers 
On the whole, quite different behaviours are observed for the quantities built on the 
axial or transversal components of the fluctuations. A separate analysis of the two 
components can be pursued in the following way. From u', u', L,  and L, one can 
examine the timescales built on these quantities. Consider the times : 

which characterize the dynamics of each fluctuation component. With a nor- 
malization by the rotation time rn = (252)-', we get the following Rossby numbers : 

Ro,=-=- 
I-,  2QL,' 

(3.7) 

Figure 10 shows the behaviour of these parameters as a function of x/M. The two 
Rossby numbers have different behaviours : on the whole, Ro, tends to decrease more 
slowly whereas Ro, decays faster; the latter effect, which is more pronounced than 
the first one, seems to be triggered a t  particular values of x /M which depend on 52. 

According to (3.7), for a given SZ, Ro, and Ro, behave respectively as ril  and ril .  
Thus, through the results of figure 10, one of the main effects of rotation appears to 
be a strong increase in the characteristic time of the transverse fluctuation 
components. This behaviour is associated with a strong increase of the lateral 
lengthscale L,, which is not compensated for by a slower decay of the Reynolds stress 
tensor component v ' ~ ;  correlatively, as observed in figure 5 ,  the shape of the one- 
dimensional spectrum E, is greatly transformed. 

Moreover, figure 10 sheds new light on a transition-like separation between two 
regimes which were observed in the lengthscales variation. In  the figure, the change 
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FIGURE 11. 
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Ro 

Rossby numbers Ro,, Ro, versus the ‘fictitious’ Rossby numbers Ro* 
(a)  M = 10 mm, ( b )  M = 15 mm, (e)  M = 20 mm. 

of behaviour of Ro, corresponds to a particular value of this parameter, e.g. less than 
unity. The exact value seems to depend on the mesh size. Thus, the rotation 
dominated regime corresponds to Ro, and Ro, < 1. Such a result is in accordance 
with the definition of these parameters, but the transition observed at  a value about 
equal to unity is surprisingly clear here. 
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13. Rossby number Ro, versus Rossby number Ro,: (a)  M = 10 mm, ( b )  
(c) M = 20 mm. 

M = 16 mm, 
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Finally, we tried to correlate these last results. To do so, we defined a ‘fictitious’ 
Rossby number defined as in (3.7) but with values calculated from the data without 

Ro* is equivalent to the Rossby number Ro, calculated in $2.1 for the determination 
of the experimental configurations. It is like an ‘external ’ parameter which is not 
affected by the rotation itself. If rotation had no effect on r, and r,, for instance, Ro, 
and Ro, would still have the same value as Ro*. But in reality, changes are expected 
for Ro* < 1. 

The Rossby numbers Ro, and Ro, have been plotted versus Ro* in figure 11. A 
rather good correlation is obtained even for Ro* < 1 .  For Ro* > 1,  rotation effects do 
not exist and Ro,, Ro,, coincide with their fictitious values. For Ro* < 1, Ro, departs 
from the diagonal and decays according to a particular power law whereas only a 
slight change can be detected on Ro,. The ‘transitional’ values of the Rossby 
numbers which determine the limit between the two regimes are 0.6, 0.8 and 1.0 for 
M = 10, 15 and 20 mm, respectively. 

Figure 11 summarizes the main information that has been inferred up to now from 
the experiment : rotation primarily affects the dynamics of the transverse part of the 
fluctuating field by increasing the time r, which characterizes the decay process of 
this component ; that of the axial component is poorly affected ; these mechanisms 
are triggered when the macroscopic Rossby numbers (Ro, or Ro,) are less than unity ; 
the ‘transitional ’ value of the Rossby numbers associated with this change of regime 
seems to decrease with the mesh size ; each regime apart from this transition can be 
characterized by means of particular power laws. 

This ability of Ro* to correlate the various results is illustrated in figure 12, which 
shows ur2, v ’ ~  and L,, L,, normalized by their corresponding values without rotation, 
as functions of Ro*. Figure 12 (a+) shows the results for each of the three grid mesh 
sizes. 

The correlations are quite satisfactory. The increase of ~ ’ ~ ( 8  $; 0) /d2 (Q = 0 )  and 
of L,(D $; O)/L,(D = 0 )  do correspond to the ‘transitional’ Rossby numbers (arrows 
in figure 11). Note that for the smallest value of Ro* and for M = 15 or 20 mm, L, can 
reach about 2.5 times its corresponding value without rotation. 

As a conclusion, the fictitious Rossby number based on the reference flows a t  
D = 0 seems to be a relevant correlating parameter to describe the experiment. 

Another interesting correlation is obtained by plotting Ro, as a function of Ro,. 
The result is shown in figure 13. In accordance with the previous figure, a departure 
from an initial ‘ quasi-isotropic ’ relation Ro, NN Ro, is identified for a particular value 
of these parameters ; this value increases with the mesh size ; the rotation-dominated 
regime corresponds to a decrease of Ro, with respect to Ro,. Moreover, this 
representation suggests the existence, a t  the smaller Rossby numbers, of an 
‘asymptoptic’ regime corresponding to a power law of the type Ro, = ( R o , ) ~ ,  where 
the exponent n is an increasing function of x /M.  

4. Comparison with the experiment of Wigeland & Nagib 
4.1. Conclusions of the WN experiment 

The different configurations adopted by WN correspond to the parameters in 
table 4. 

The main conclusions of WN are the following: 
2 FLH 220 
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U (m/s) : 6, 9, 15 
M (mm): 2.54, 3.9, 6.25 
52 (rad/s): 6, 20, 40, 60, 80 

TABLE 4. Experimental parameters for the WN experiment 

(i) Except for certain configurations, rotation slows the decay of the kinetic 
energy q2 ; 

(ii) the slowing down of the decay of q2 is primarily due to  the reduction of that 
of v12; 

(iii) this phenomenon is associated with a faster increase of the transverse integral 
scale L,, and the axial scale L ,  is less affected ; 

(iv) when q2 decays faster in the presence of rotation, mechanisms (ii) and (iii) are 
reversed ; 

(v) the dimensionless parameter Qt = Qx/U characterizes changes in the structure 
of turbulence ; the value Qt/2x = 0.2 plays a special role ; 

(vi) the parameter M / U  seems to have some influence: when M / U  < 0.001 s, q2 
decays slower than in the absence of rotation, and the values of q2 can be correlated 
bv means of the parameter 

which scales as a frequency; when M / U  > 0.001 s, and for the lowest values of 
S2 (s2 < 50 rad/s), q2 decays faster. 

These conclusions will now be discussed in light of the present experiment. 

4.2. Reynolds stress components 

Results reported in figure 14 are calculated from the data given in WN for U = 6 m/s 
and M = 3.9 mm. This case gives a good illustration of the behaviour of the normal 
Reynolds stresses in the WN experiment. 

Here, M / U  = 0.00065 s and, accordingly to conclusion (vi) quoted in the previous 
section, q2 must decay slower in the presence of rotation. This is true except for the 
smaller value of SZ. Discarding this case, one sees from figure 14(b)  and ( e )  that the 
slowing down of the decay of q2 is in fact due to the decay of d2. This is in accordance 
with conclusion (ii). However, figure 14(b) shows that the decay of the axial 
component d2 increases. This partly counterbalances the first effect on v ' ~ .  The same 
tendency, but even less pronounced, can be detected in our results in figure 6. 

This particular aspect was not contained in the conclusions of the WN report, but 
in our opinion this is an important characteristic of this experiment. In particular, 
i t  can explain the role of the dimensional parameter Qt/2x as noted in conclusion (v). 
This point will be developed in $5. 

4.3. Lengthscales 

Figure 15 shows the lengthscale variation corresponding to the same configuration as 
before. 

The authors have calculated these quantities from the time correlations, using a 
numerical technique based on successive block averaging in order to smooth the tail 
of this function. The result is more or less equivalent to the modifications we made 
in order to  treat the low-frequency range of the power spectral densities. 
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Except again for IR = 6 rad/s, the accordance with our experiment is qualitatively 
fairly good. Both experiments are thus in accordance concerning conclusion (iii). But 
contrary to figure 9, no particular power laws can be detected in the WN results. 

4.4. Correlating parameters 
Concerning now the role of M / U  and that of the frequency $ defined in (4.1), with 
regard to conclusion (vi), WN advised further experimentation, with M / U  > 0.001 s. 

Our experiments, where M/U = 0.0010, 0.0015 and 0.0020 s respectively for 
M = 10, 15 and 20 mm fulfil this condition. However, the decay of the kinetic 
energy is never accelerated whatever the rotation rate (see figure 4). 

Contrary to the macroscopic Rossby numbers used in the present study the 
parameter q5 has no evident physical meaning. Figure 16(a) shows a cluster of values 
of q2 using the same representation as WN. A figure of this type was used as a basis 
for conclusion (vi). Figure 16 ( b )  shows the same quantities versus the Rossby number 
Ro* we introduced in $3.5.  Here Ro* is taken equal to i(RoZ+Ro:), owing to the fact 
that  in the WN experiment the characteristic times 7, and r, are not equal (see (3.7) 
and (3.8)). 

The correlations are not very good in either case, but the second is not worse than 
the first. On figure 16(b) ,  the rise in q*(Q =I= O ) / q 2 ( I R  = 0) seems to be associated with 
values of Ro* less than unity. 

This last curve is evidently easier to interpret. In  fact, in the WN report the 
frequency q5 only correlated q2. The variations of these functions are slight and q5 is 
unable to correlate other parameters such as, for instance, the integral lengthscales. 

Figure 17 shows a correlation of Ro, and Ro, versus Rot and Ro,* for the same 
experimental configuration discussed in the two previous sections. The correlations 
are not very good, owing to  the dispersion of the experimental values (mainly the 
lengthscales) and to the errors introduced during the determination of these values 
from the figures of the report. However, the same tendency appears in figure 11, with 
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FIQURE 16. Correlation of the values of q* measured in the WN experiment : (a)  versus the 

frequency $, ( b )  versus Ro*. 

a faster decrease of Ro, for values smaller than unity. We reach the same conclusions 
from certain other cases we investigated. 

5. Displaced particle analysis 
The next two sections will present theoretical developments based on a spectral 

approach. Before going further in this direction, a simple ‘displaced particle ’ 
argument may already bring useful information on a few of the basic mechanisms 
responsible for the phenomena observed in the experiment. 

A displaced particle argument leads, for instance, to a simple physical description 
of the stabilizing or destabilizing role of rotation in a rotating shear flow (Tritton & 
Davies 1981). This approach can also help to identify the relevant lengthscales 
for the modelling of turbulent shear flows in the presence of a body force (Hunt, 
Stretch & Britter 1988). In the case of a rotating grid generated turbulence the 
argument can be stated as follows. 
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FIGURE 18. Sketch of the influence of the Coriolis forcef, on a displaced fluid element : Coriolis force 
components, (a )  ; typical trajectory of the fluid particle in the plane normal to the rotation axis, 
( b ) ;  typical trajectories in the presence of an axial mean velocity in high, (c), and low, (d),  Rossby 
flows with corresponding dissipation (2LJ and diffusion (L,) lengthscales. 

The flow is considered in a moving frame rotating at  a rate 9. As sketched in figure 
18(a), a fluid element is displaced in the plane normal to the rotation axis (axis 1) 
with a given velocity u(0, v, w), and is subjected to a Coriolis force of components f,(O, 
+252pw, -2Qpv). The particle has a circular trajectory (figure 18b). Thus, the 

Coriolis force tends to inhibit the transversal (normal to 0) movements of the fluid 
element, in a similar way that the buoyancy force damps the vertical displacements 
in a stably stratified turbulent flow. Note that in the stratification case an exchange 
occurs between the potential energy and the vertical kinetic energy, whereas in the 
rotation case the reduction of transverse displacements has no consequence, a priori, 
on the energy of the transversal fluctuations. 

The above arguments suggest L, - (d2 + ~ ' ~ ) + / 2 9  x v'/252 as a relevant length- 
scale for the mean transverse displacement of the fluid elements. This means that 
most fluid elements are displaced laterally within a distance of order ~ ' 1 2 9  (in a 
stratified flow, one can similarly use the buoyancy lengthscale as L, x w'/N, where 
N is the buoyancy frequency, to characterize the mean vertical displacement of the 
fluid elements (see Hunt et al. 1988)). L, can also be interpreted as the characteristic 
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scale of the eddies whose vorticity ( %v’/L,) is proportional to the mean vorticity of 
the flow ( 2 9 ) .  One can simply call the scale L,, the ‘Coriolis lengthscale’. Another 
possibility could be ‘radius of gyration ’ in line with the usage in plasma physics for 
a particle in a magnetic field. 

The second relevant lengthscale in our flow is an integral lengthscale, e.g. 2L,. This 
scale is initially proportional to the mesh size of the grid. In  the absence of rotation, 
2L, determines the dissipation rate of the turbulence. When background rotation is 
added, the two lengthscales are ‘in competition’ and their ratio is the Rossby 
number Ro, (see (3.7)).  

The experiment shows that a rotation-dominated regime associated with a 
transverse structure of the flow (increase of L,) and a modification of the dissipation 
occurs when Ro, < 1, that  is when L,  < 2L,. Within the frame of the present 
analysis, this means that rotation affects the turbulence when the energy containing 
eddies become sufficiently large to be influenced by the ‘transverse confinement ’ 
imposed by the Coriolis force. 

The arguments lead also to the conclusion that the lengthscales involving only the 
axial fluctuations, as for example the integral lengthscale L,, are likely to be less 
affected by the Coriolis force which is restricted to the transversal plane (any effect 
on L, must be attributed to the pressure which connects the transverse and axial 
movements). This is confirmed by the experiment. 

As sketched in figure 18 ( c ,  d ) ,  the addition of a mean axial flow along the rotation 
axis leads, in a sufficiently low-Rossby-number case (d ) ,  to axially elongated 
trajectories similar to columnar structures. In  such a flow, one can effectively expect 
an increase of L, which measures the mean correlation length in the axial direction 
of instantaneous transversal fluctuations. Correlation lengths of transverse 
fluctuations in the transversal direction, whose measurement would necessitate the 
use of two probes, have not been measured. The above argument also suggests an 
increase of this scale. Such an increase has been demonstrated by the numerical 
simulation of Bardina et al. (1985) and it has also been found in the EDQNM results 
of Cambon & Jacquin (1989) (however, these various computations have shown that 
the scales Lii , l ,  i = 2 ,  3, are the most sensitive to rotation). 

The main weakness of this argument is to ignore the impact of the fluctuating 
pressure. As it will be shown in the next two sections, spectral analysis is a 
convenient tool to investigate rigorously the role of (at least part of) the pressure 
terms in the basic equations. 

6. Linear regime 
In this section, we will discuss possible linear interpretations of some of the above 

experimental results, especially the possible impact of the inertial wave regime. This 
concept will first be recalled in $6.1. Sections 7 and 8 will be devoted to the influence 
of these waves on the Reynolds stresses and to their interaction with the solid 
boundaries of the apparatus. 

6.1. Inertial waves 
Inertial waves characterize the way perturbations propagate in a rotating fluid. They 
correspond to the linear solution of the Navier-Stokes equations in a rotating 
reference frame (see e.g. Greenspan 1968) : 

a 1 
- u ( x , t ) + 2 5 2 x u ( x , t ) + - V p + v V x  (V x u ( x ) )  = U ( X , t ) ( V U ( X , t ) ) .  
at P 

(6.1) 
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FIGURE 19. Rotation of the initial spectrum &(k, t = 0) in the plane normal to k. 

If we neglect the right-hand side of this equation, the solution is a wave regime of the 
kind 

u(x , t )  = Re(li,(k)exp(-i(k.x+_w(k)t))exp ( -vk2t)), (6.2) 

with a phase speed equal to 
2Q.k 4) = 

k k2 . 

Let li(k) denote the spectrum of u ( x )  

d(k,t) = - u ( x ,  t )  exp (-1k.x) dx. 

For an incompressible flow: k-ri(k) = 0. The linear spectrum a(k , t )  is written 
(Cambon & Jacquin 1989): 

ri(k,t) = R (i, - ___ 2t kt )  exp ( - vk2t) C(k, t = 0) ,  

where R(k /k ,  9) denotes the rotation matrix having q5 for its angle and k for its axis. 
The anisotropic propagation of the inertial waves in physical space corresponds in 
spectral space to a differential rotation of the initial spectrum d ( k ,  t = 0) in the plane 
normal to  k ,  with a rate 2Q-klk.  As sketched in figure 19, this rotation is maximum 
for k parallel to 52, and null for k normal to f2. 

The inertial waves are dispersive. Their phase speed (6.3) depends on the 
magnitude of the wave vector, but also on its orientation. This ‘anisotropic 
dispersivity ’ plays a fundamental role with regard to the dynamics of rotating fluids. 

6.2. Inertial waves in an homogeneous $ow 
The simultaneous correlation between two spectra a(k) 

(a*@, t )  C(k, t ) )  = O(k, t )  S(k-p) (6.6) 

defines the second-order spectral tensor. The Reynolds stress tensor, Ui j ( t ) ,  
corresponds to an integration over k of o(k , t ) :  

Uij(t) = (Ui(X, t )  u,(x, t ) )  = IR3 Oi,(k, t )  dk. (6.7) 

The kinetic energy reads 
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In this section, one considers a superposition of non-interacting inertial waves. 
From (6.5) we get 

1 

U(k , t )  = R ( t ,2b]k .k t )0(k , t  - - = 0)R  (t - , -- 2t t )  exp ( - 2 u ~ t ) ,  (6.9) 

with k .  U(k)  = 0 for an incompressible flow. From (6.9) one sees that the linear effect 
of rotation on U is analogous to its effect on c3: it corresponds to a differential 
rotation of the initial tensor U(k ,  t = 0) in the plane normal to k with a rate 4(D- k /k )  t .  
The kinetic energy (6.8) is only influenced by viscosity. 

If the fluctuating field is initially (three-dimensional) isotropic, with : 

E (4 k k  
4nk2 ( ” k2 ) U,(k,t = 0) = 0 6 -3 , (6.10) 

from (6.9): U(k , t )  = o ( k , t  = 0)exp(-2vk2t), (6.11) 

then, isotropy is conserved. 
Let us consider now the case of an initially non-isotropic fluctuating field. Through 

(6.9) the eigen directions of U(k ,  t = 0 )  will be rotated in a way which depends on the 
orientation of k .  In accordance with (6.7), the Reynolds stress tensor Uij(t) which 
corresponds to a three-dimensional integration of U ( k ,  t )  over k,  will thus entirely 
depend on the precise distribution of U(k, t = 0). 

In a rotating frame, the equations of the Reynolds stress tensor (with D parallel 
to the axis 1) are 

In the second part of these equations, the underlined terms are the ‘Coriolis terms’ 
(which are redistribution terms). One then identifies the ‘pressure terms’ and the 
‘ dissipation terms ’. 

The integral over k of (6.9) is the solution to this system if we neglect the nonlinear 
part of the pressure terms (the ‘slow part’ of the pressure strain correlations). 

The strong sensitivity of the linear solution of rotation to the initial state has been 
illustrated by Townsend (1976), Itsweire et al. (1979), Jacquin et al. (1986) and 
Cambon & Jacquin (1987). In these references, the initial states were obtained by 
applying a rapid distortion to an isotropic spectrum. The first two authors considered 
the case of a plane distortion and the second, that of axisymmetric convergence and 
divergence. In the three last references, the tensor U(k ,  t = 0) at the end of these 
‘devices’ was determined by means of Craya’s spectral method (1958). These 
conditions were then injected in the linear solution (6.9). 
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FIQURE 20. Linear evolution of the normal stresses under solid hody rotation of various non- 
isotropic initial conditions: (a )  plane distortion (Itsweire et al. 1981) ; ( b )  dilatation; (c) contraction 
(Jacquin et al. 1986). 

As an illustration, figure 20 shows the corresponding variation of the Reynolds 
stress components versus the parameter (Qt)  for the three different initial states. 

In the case of figure 2 0 ( a )  (plane distortion) the oscillations of the components 
normal to Q are due to the action of the underlined terms of (6.12).  These terms are 
null for the two other cases (equidistribution of the transverse components). In all 
three cases, energy is redistributed between the transverse and the axial components. 
This can only be due to the (rapid) pressure action. This redistribution, as well as the 
oscillations of the normal components in figure 2 0 ( a ) ,  are rapidly damped. This is 
again a consequence of pressure effects. The asymptotic anisotropy depends entirely 
on the initial anisotropy. For example, a ‘cigar’ type Reynolds tensor (figure 20(b ) ,  
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FIGURE 21. WK experiment : Correlation of v‘/u‘ versus Q ( x - x * ) / 2 n U  for all configurations 

and all rotation rates (figure from Wigeland & Nagib, 1978). 
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FIQURE 22. Evolution of u‘ /u ’ .  WK experiment : U = 6 m/s, M = 3.9 mm ; present experiment: 
U =  10m/s ,M=15rnm.  

- 
ui “N 2 < u”,) becomes a ‘pancake’ type, whereas a ‘pancake’ type Reynolds 
tensor (figure 20 (c ) ,  2 < 2 x z) becomes a ‘ cigar ’ type. 

These linear effects of rotation can play an important role in experiments where 
pure isotropic conditions are rarely achieved. 

Figure 21 is what supports conclusion (v) in WN. It shows the variation of the 
‘ anisotropic parameter ’ v’/u’ normalized by the corresponding values obtained for 
Q = 0, for all the configurations of table 4, versus Q(x-x*)/27cU. If we neglect the 
influence of the origin x* for sufficiently large values of x /M,  this parameter is 
equivalent to Qt /2x .  In the absence of rotation, d/u f  was about 0.74 so that 
figure 21 shows that this initial anisotropy decreases as Qt/2n increases. When 
the latter reaches about 0.2, then a broad plateau is obtained. As in figure 20(c), a 
quarter revolution (SZt/27c = 0.25) characterizes the end of the linear influence of 
rotation. 



Homogeneous turbulence in the presence of rotation 39 

This behaviour is also illustrated in figure 22 for the particular configuration which 
has been detailed in $4. Our experimental points corresponding to M = 15 mm are 
superimposed in this figure. In accordance with figure 7 ,  this case is the only one with 
any significant changes in v l /uf .  Here t denotes the time elapsed since the grid. In the 
WN experiment, a rapid return towards isotropy is observed up to Qt/2n x 0.2, 
whereas our own results show a gradual attenuation of anisotropy. 

Thus, the strong damping of a high initial anisotropy in the WN experiment could 
be fairly attributed to linear effects similar to those of figure 20(c) .  However, 
contrary to the pure linear solution shown in this figure, the anisotropy is never 
inverted in figures 21 and 22. Nonlinear damping seems to be the reason for this 
smoother behaviour. This has been confirmed by calculations with an EDQNM 
model for the nonlinear terms (Jacquin et al. 1986; Cambon & Jacquin 1987). 

In conclusion, if the turbulence is initially non-isotropic, the impact of inertial 
waves can be spectacular: the variation of the Reynolds stress tensor is strongly 
affected by the linear part of the pressurestrain correlation which reflects the 
inertial wave effect. These effects are transitory and the final anisotropy depends 
entirely on the initial anisotropy. In the case of a grid-generated turbulence, with a 
‘ cigar type ’ anisotropy, a quarter of a revolution seems to fix the end of these effects. 

6.3. Inertial waves propagating in a vessel 

As a consequence of their dispersivity, the inertial waves can transport the energy of 
the fluctuations, which can then be dissipated at the boundaries of an apparatus 
during multiple reflections. 

Phillips (1963) gave a complete theory of this problem. This theory provides the 
basis for one of the most plausible interpretations Ibbetson and Tritton gave of their 
experiment. In Phillips’ paper, the relevant parameters are introduced as follows. 

The speed of energy transport by the inertial waves is given by the group velocity 
(see also Greenspan 1968) : 

2f2xa 
c,(k) = Vk(w(k)) = a x - k 7  (6.13) 

with a = k /k ,  o ( k )  being the pulsation defined in (6.3) and v k ,  the gradient in k space. 
Through (6.13) the energy is transferred at right angles with respect to k (the 
group speed is normal to the phase speed). If 

e(k, t )  = i(&i(k,  t )  Gi( - k ,  t ) )  (6.14) 

denotes the energy of an inertial wave ( k )  at instant t ,  Phillips showed that during 
a reflection on a boundary, e(k, t )  is dissipated with a proportion of the order 

where k and k‘ denote respectively the incident and the reflected wave, and 

vK2 
E , = =  

(6.15) 

(6.16) 

is an Ekman number built on the wavenumber K equal to the projection of k on the 
boundary. Through (6.13) and (6.15), the orientation of k and that of the boundary, 
with respect to f2, must be both taken into account in order to deal with this 
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phenomenon (see Ibbetson & Tritton (1975) for more details on this point). However, 
ignoring this directional aspect of the problem and following Phillips one can retain 
the parameter 

(6.17) 

for characterizing the dissipation of the energy E(k)  of a wave (k) (by multiple 
reflections with the boundaries of an apparatus). E(k)  denotes the integral of e(k)  on 
a spherical shell of radius k and we have introduced a constant A in order to take into 
account the directional aspects which have been neglected. 

Ibbetson & Tritton have proposed a possible interpretation of their experiment by 
considering their flow as a superposition of non-interacting inertial waves. From 
Phillips' theory, they proposed an inertial model for the increasing decay of energy 
with rotation they observed in their experiment. For E(k) ,  the model reads: 

with the attenuation rate (AE/E)(k) defined in (6.17) and where the time 

D 
7t = - 

cg 

(6.18) 

(6.19) 

is the mean time of transit of a wave (k) in a vessel whose characteristic size is D. 
Finally that leads to:  

{;+2vk2+AEb2Q (6.20) 

where 
V 

ED = - 
2QD2 ' 

An integration of (6.20) over k leads to the following balance equation for the 
kinetic energy : 

(6.21) 
d%2 2 = - (7-1 + 
dt ~ ' ,  

where (6.22) 

(6.23) 

The time r, characterizes the dissipation in the Ekman layers. 7, defines also the spin- 
up time of the vessel. 

From the two characteristic times 7, r, and the rotation time 

T1) = (2Q)-l ,  

one can deduce three relevant parameters: a Rossby number 

(6.24) 

(6.25) 
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which characterizes the balance between the rotation effects (whatever they be) and 
the dynamics of the fluctuating field; the Ekman number (its square root) 

(6.26) 

which evaluates the relative importance of the Ekman dissipation with respect to 
other rotation effects on the flow; and the ratio between these two numbers 

(6.27) 

which evaluates the influence of boundaries on the dynamics of the flow ( J  was given 
by Ibbetson & Tritton in a different form by introducing the Reynolds number). An 
experiment where Ro, < EL will be marked by important boundary effects and will 
thus be outside the frame of homogeneity. 

In the experiment of Ibbetson & Tritton, when an increase of the decay of h2 with 
rotation was observed, the typical lowest values of J were about ten. As proposed by 
these authors, such a high value could reflect the (neglected) directional aspects of the 
mechanisms. 

J has been determined in the present experiment. e,  which enters into the 
definition of Ro,, was calculated from relation (2.2) by a determination of an 
exponent a and an origin x* for each M and 52 in the same way as for figure 4(d). 
Figure 23 shows the evolution of J for M = 15 mm ( J  is plotted versus a 'fictitious' 
Rossby number Ro, which has been determined from the results without rotation). 

In  figure 23, J is greater than one hundred. The same order of magnitude is 
obtained for the two other grids. The same conclusion is reached from the WN 
results. 

A conclusion is that  boundary effects seemed negligible in these experiments which 
are thus valuable with regard to this particular homogeneity constraint. 
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1 

FIGURE 24. Representation of U (k) in the plane k ,  = 0 through its eigenmodes and q5z in 
the local frame (el = (k/k) x (Q/Q), e2 = (k/k) x e l ) .  

7. Nonlinear effects and transition towards two-dimensional turbulence 
The present experiment shows that the rotation effects are strongly anisotropic. 

The most significant illustration of this st,ructuring is the behaviour of the 
characteristic times I-, and r,, or those of the corresponding macroscopic Rossby 
numbers Ro, and Ro,. I n  this section we discuss the possible connections between 
these results and the problem of the transition towards two-dimensionality. 

7.1. Spectral forma.lism 
A full spectral formalism was developed by Cambon & Jacquin (1989) to deal with 
the anisotropic influence of rotation on nonlinear wave interactions. The full 
development of this theory is not necessary for our purposes. We will only retain the 
following main ideas. 

One considers the second-order spectral tensor defined by relation (6.6). The 
integral lengthscales L,  and L, are associated with integrals of the normal 
components Ol1 and 8,, in the plane k, = 0:  

It appears convenient to consider U(k)  through its eigenmodes, denoted and $,, 
in an orthonormal frame (e1,e2) lying in the plane normal to k (Herring-Craya 
representation), so that el lies in the plane normal to L?. This representation is 
sketched in figure 24 for a wave vector normal to L?: 
$,, which lies in the plane normal to L?, will be called the two-dimensional mode? and 
$z, the parallel mode. In the plane B = &, the spectral tensor U ( k ,  t )  can be written 
in the axisymmetric form : 

'& 6 = in, 4 = $ z ( k  in ,  t)P,j(k) + ($I@, in,  4 -w, in, t))P,L,(k). (7.2) 

t In strictly two-dimensional turbulence, the spectral energy is only concentrated in the plane 
8 = in, and q5* disappears : = S(k,) E(k) /2nk ,  $2 = 0. 
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10 

For 0 < 8 < in, a more complicated form is obtained which takes into account the 
rotation of the principal axes of oi j (k)  (see Cambon & Jacquin 1989). 

is the projector in the plane normal to k ,  and P$ = e te ; ,  the projector in the plane 
normal to 52. The energy of the wave (k )  reads 

e(k) = i m k )  = a($, +$& (7.4) 
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FIGURE 25(b ) .  For caption see facing page. 

and from the relations (7 .1)  and (7.2), the integral lengthscales can be written as 
follows : 

L,(t) = $1; k d k $ , ( k ,  k, = 0, t ) ,  

Lu(t) =$[omkdk$,(k,k, = 0 , t ) .  
(7.5) I 

The experiment shows that when the macroscopic Rossby numbers are small 
enough, the lengthscales become very anisotropic with LJL,  > 1 (figure 9) whereas 
a t  the same time, the Reynolds stress structure is not very much affected (figure 7). 
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FIQURE 25. Components of the energy in the plane normal to f2 versus the 'fictitious' Rossby 
number Ro* : (a)  M = 10 mm, ( b )  M = 15 mm, (c) M = 20 mm. 

Relations (7.5) show that such trends are linked to a strong anisotropic structure of 
the second-order spectral tensor o ( k )  in the plane 8 = in, with 

can then be proposed as a 
possible manifestation of a transition towards two-dimensionality . This spectral 
interpretation of the transition from an isotropic three-dimensional turbulence 
towards a two-dimensional one, together with its connection with the behaviour of 
the lengthscales and the normal stresses, constituted one of the main contributions 
of Cambon & Jacquin (1989). 

> q5z. 
Finally, the increase of the two-dimensional mode, 
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FIGURE 26. WN experiment : components of the energy in the plane normal to 52 versus the 
‘fictitious ’ Rossby numbers Ro* and Ro* for various configurations. 

7.2. Experimental characterization of the transition towards two-dimensionality 
With (7.5), L, and L, can be considered as an evaluation of the relative amount of 
energy in the plane k, = 0. Moreover, according to (7.5), the quantities 

E,(t) = 2v”LJt) = 2 ~ ’  kdk$,(k, k, = O,t), 

give the global contribution of each mode $, and $’ in this plane. E,(t) and E,(t) can 
be defined as two components of the contribution of the equatorial plane to the total 
energy q2. E,(t), which only involves the two-dimensional mode $,, represents the 
strictly two-dimensional part of this energy. 

Figure 25 shows El and E ,  normalized by QUM2, versus the fictitious Rossby 
number Ro* for the three mesh sizes (the division of El  and E ,  by 52 is necessary to 
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correlate the results ; Uand M are then introduced, arbitrarily, for the normalization). 
One sees that for Ro* < 1, the decay of El is blocked whereas E, keeps on decaying 
for a time, the same way as during the quasi-isotropic regime Ro* > 1. The arrows 
correspond to the ‘transitional’ values of Ro* already identified in $3.5. However, a 
blocking of E, is also observed in the lowest Rossby number range. In  this situation, 
the total energy contained in the plane orthogonal to 0 is conserved. This quantity 

(7.7) 
reads : 1 

e(k, = O , k , ,  k,,t)dk,dk, = -{E,+E,}(t). 271 s 
Two different scenarios can be inferred concerning a possible asymptotic (very low 

Rossby number) two-dimensional flow : the first is that the whole energy (7.7) of the 
transverse waves is conserved, and the second, that only the two-dimensional mode 
$1 is conserved. In physical space, both possibilities correspond to fluctuations 
normal to 0. But in the second case no other movement is possible, whereas in the 
first case this two-dimensional random movement can be superimposed on a random 
solid body movement in the axial direction. The present experiment was unable to 
reach small enough values of the Rossby numbers to test the validity of these two 
possibilities. 

Figure 26 shows the variation of the normalized E, and E, versus Ro: and Ro,* 
obtained from WN for various configurations (the normalization adopted is that 
which gave the ‘best ’ correlation ; the time 7,0 or 7,,, are calculated from the integral 
lengthscales and the r.m.s. values measured in the initial section of the duct). The 
same trends are observed as in 5gure 25. 

8. An interpretation of the effects of the mesh size of the grid 
We have noted in figures 11 and 25 that when M decreases, the transitional 

mechanisms of rotation were less pronounced and that the transition occurs a t  lower 
Rossby numbers (see arrows). 

M directly influences the Reynolds number of the flow and we propose here to show 
how the Reynolds number influence could explain the above-mentioned differences 
between various experiments. 

A Reynolds-number effect could be expected in the following way: when the 
Reynolds number is small, i.e. for small grids, the inertial mechanisms of rotation 
responsible for the transitional mechanisms may be masked by pure viscous effects. 
The following analysis is proposed to check this possibility. 

The peculiar role of the transverse waves (k normal to 0) was underlined in the 
previous section. We consider the energy of these waves (see (6.14) and (7.4)), 
e(kl = 0). In  the presence of rotation, the equation for e ( k ,  = 0) retains the following 
classical form : 

[ i + 2 v k Z ]  e(kl = 0, k,, k,, t) = T(k, = 0, k,, k,, 52, t ) ,  

where T(k,t) = -Ik, J <dl@,t) di(k, t )  21(q, t)>dq, (8.2) 

(8.1) 

p+q = k 

represents a transfer function between the waves (p), (4) and (k). 
The present experiment has shown that a basic mechanism of rotation was to 

damp the inertial transfer T(kl  = 0, k,, k,, a, t). The experiment also indicates that 
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the times rQ = (2L2-l and r, = 2Lv/v’, whose ratio is Ro,, are relevant to characterize 
these inertial mechanisms. 

Concerning the viscous effects, they can be evaluated in the following way. 
One considers the transverse waves of higher energy and characterizes them by the 

27T K = -  
wavenumber 

(8.3) 
Z V  * 

In accordance with (8.1), the viscous damping of these waves can be characterized 
by the timescale 

The ratio 

7, = (2vK2)-l. 

(8.4) 

defines an Ekman number which characterizes the relative influence of the inertial 
and viscous mechanisms in the balance equation (8.1). 

A Reynolds number can then be introduced through the following relation: 

Ro, 
Re, 

E,  = 8?-, 

V ‘ W V )  with Re, = -. 
V 

Figure 27 presents the different domains covered by the whole set of our 
experiments in terms of the three dimensionless parameters defined above. The 
straight lines correspond to relation (8.5). The corresponding values of the Reynolds 
number 

Re = - 

are also indicated for reference. They are calculated by means of the isotropic 
definition of A :  

(8.7) qh 
V 

The figure is interpreted as follows. When the Reynolds number is not large enough, 
a critical situation corresponding to Ro, < 1 (rQ < 7,) and E,  2 1 (7Q > ry) may occur. 
In this situation the inertial effects of rotation may be reduced by viscous effects. 
When the Reynolds number is sufficiently high and when the transitional 
mechanisms are triggered (say for Ro, x l),  the Ekman number E ,  is sufficiently 
small and viscous effects on the transverse waves become negligible. 

One sees in the figure that for the smaller mesh sizes the domains covered by the 
corresponding experiments approach the critical domain Ro, < 1, E,  2 1. 

The Reynolds numbers in the experiment of Wigeland & Nagib were much smaller 
than in our experiment (Re, 5 25) .  The above argument may thus explain why the 
transitional mechanisms were less pronounced in the first experiment (see figures 17 
and 26). 
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FIUURE 27. Parametric representation of the various experiments in terms of the transverse 
Ekman number E,, Rossby number Ro, and Reynolds number Re,. 

9. Conclusions 
The present experiment fulfils the various conditions of homogeneity : the mean 

flow is of solid-body rotation, the profiles of the second-order moments are regular in 
a large spanwise proportion of the duct and the Ekman dissipation is negligible. 

It is confirmed that rotation slows the decay of turbulence (figure 4) and that it 
mainly affects the transversal part of the fluctuating field by strongly increasing the 
integral lengthscale L, (figure 9). 

In contrast to the integral lengthscales, the structure of the Reynolds stress tensor 
is found to be little affected by rotation (figure 7).  

One of the main contributions of the present study concerns the characterization 
of various regimes of the flow. The relevant parameters are the macroscopic Rossby 
numbers, Ro, and Ro,, built separately on the axial and the normal components of 
the fluctuations. These parameters enable us to characterize a transition-like 
occurrence of the rotation dominated regime. The latter is associated with a stronger 
decrease of Ro, (figures 11 and 13). 

A review of relevant theories helps to interpret various aspects of the experimental 
results. 

First, a simple displaced-particle argument shows that a direct effect of the Coriolis 
force is the confinement of the transverse movements of the fluid particles. As a 
consequence, the mean transverse displacement of the fluid particles is limited to 
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L, = v’/2sZ. The changes in the structure of the turbulent field, which occurs when 
Ro, < 1,  that  is when L, < 2Lv, is thus associated with a consequence of this Coriolis 
constraint on the large eddies whose characteristic size is 2Lv. This argument leads 
also to a simple physical interpretation of the anisotropy of the various integral 
lengthscales. 

An extended analysis of the equations of motion was then performed, mainly 
through spectral analysis. 

We first investigated the consequences of the linear wave regime on the statistics 
of the flow. We showed that, in contrast with the results of Ibbetson & Tritton, 
the interactions between the inertial waves and the boundaries of our apparatus are 
negligible. On the other hand, it was shown that the linear regime can strongly affect 
the structure of an initially anisotropic flow. This linear regime is less apparent in our 
experiment than in the experiment of Wigeland & Nagib. 

Consequently, the anisotropic mechanisms brought to light in the experiment are 
primarily due to nonlinear mechanisms. As shown by Cambon & Jacquin (1989), the 
increase of the lengthscale ratio L J L ,  is related to  a strengthening of the energy 
associated with the wave normal to the rotation axis, together with a predominance 
of the normal mode of the second-order spectral tensor associated to these waves. 
The contribution of this mode to the total kinetic energy (what we call the ‘strictly 
two-dimensional part of the energy’ in 57.2) can be evaluated through the quantity 
d2LV. The strong damping of the decay of this quantity (as soon as the Rossby 
number is small enough) brings an experimental confirmation of this transition 
mechanism (figure 25). 

Finally, an interpretation of the effects of the mesh size of the grid is given in terms 
of Reynolds number influence. It is shown that for small Reynolds numbers (that is 
for small grid mesh sizes), the concentration of energy on the transverse waves 
occurring at small Rossby numbers can be counterbalanced by pure viscous 
dissipation (the latter is characterized by an Ekman number). A parametric 
representation of the experiments using a Rossby number, an Ekman number and a 
Reynolds number enables us to discriminate different regimes of the flow (figure 27). 

The authors wish to thank P. Geffroy (ONERA) for his valuable contribution to 
the experiments. This work was supported in part by DRET under contract no. 
87.001.57. 
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